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Abstract
A technique is presented to construct a multiscale

representation of planar contours based on the wavelet
transform (WT). To generate this wavelet description, a
partial 1-D discrete wavelet transform (DWT) is applied
to the vertical and horizontal components of a length-
parametrized planar curve. This multiscale
representation descomposes the curve into different
levels of resolution and allows to reconstruct it to a
desired degree of aproximation. The results show that
typical objects are well represented by a small number
of wavelet coefficients allowing for a compact object
shape representation. An aplication of this compact
representation for matching and tracking purposes is
presented and its results are analized.

Keywords: pattern recognition, wavelets, shape
description, matching, tracking.

1.  Introduction
A powerful propery for distinguising an object from

its surroundings in an image is overall shape. Shape can
be used to complete the information provided by other
local properties in an image such as gray level, texture
or color. Therefore an efficient representation of shape
information is a basic task in many areas of computer
vision, video processing and analysis and computer
graphics.

Many shape representations that are potentially
useful for shape description have been developed [1].
Two-dimensional shape can be represented using a real
or complex 1-D function. From these representations,
shape descriptors can arise in the form of Chain codes,
Polygonal aproximations, Elliptic fourier descriptors, B-
Splines or Multiscale gaussian descriptions.

Recently it was presented in [2] a multiscale
descriptor of planar shapes based on periodized wavelet
analysis in the continous metric space L2([0,1]). In [3]
an analysis of such description was presented based on

the Discrete Wavelet Transform. It was shown that
shapes can be represented with a small approximation
error, allowing for an efficient shape representation.

However, in order to use a wavelet representation
in practical applications it is necesary to obtain an
invariant wavelet representation. In this work we show
how such representation can be obtained and we use
such representation to the contour matching and
tracking problem.

2. The Wavelet description.
A wavelet basis uses translations and dilations of a

scaling function � and a wavelet functions �. A 1-D
function f can be expresed as:

 Let then r (s) = ( x(s), y(s)) be a discrete parametrized
closed planar curve that represents the shape of an
object of interest. If the wavelet transform is applied
independently to each of the x(s), y(s) functions, we can
describe the planar curve in terms of a decomposition of
r (s):

where subindex x and y represent function pertenence,
obtaining a multiresolution representation of shape
where coarser scales provide a simplified representation
of shape and  finer scales add more detail to the contour
representation (Fig 1):
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   Figure 1 Multiscale  representation of shape

2.1 Properties of the wavelet descriptors

The main reason in using wavelets is its
capability of detecting and representing local features.
The WDT has invariance, uniqueness and stability
properties asuming that the parametrization of curves
has the same starting point . This is a consequence of a
well known fact: the WDT coefficients are not invariant
to parametrization shifts.

3. Wavelet descriptors
The WDT and the multivavelet discrete

transform (MWDT) can be efficiently implemented in
linear time using a pyramid algorithm. Since our goal is
to obtain a compact representation of contour it is
necesary to develop a contour simplification strategy.

In [3] it is proposed to threshold independently
the cj,k,x  and cj,k,y coeficients, and their results are
discused. Although this strategy provides a compact
representation it is not invariant. It can be easily show
that a contour rotation does not conserve the magnitude
of these coefficients and therefore a small coeficient that
has to be thresholded at one angle may be made not to
be thresholded by a suitable rotation. It is therefore
necesary to obtain an invariant thresholding rule. We
propose to threshold the cj,k vector based on its norm.

It can be show that this yields an invariant
simplification. In order to test the simplification
capability of this rule we have aplied this thresholing
rule to a set of synthetic planar curves (see Fig 2). For
each image we only used the outline of the figure,
interior contours were not processed. All contours were
resampled in order to obtain 256 points and
decomposition was taken to the coarsest level. Then the
set of the n most important coefficients (coefficients
with maximum amplitude) were obtained for different
values of n=32, 64, 128.

The mean distance error between the
reconstructed curve curve from this set of coefficients
and the original curve is then show for distinct wavelet
families: Haar, Daubechies class D4 and least
asymmetric LA8, and distinct multiwavelet families (
Geronimo-Hardin-Massopust GHM, Chu-Lian CL, and
Shen-Tan-Tham SA(4) ) for comparison purposes the
Elliptic Fourier Transform and B-Splines are also
included.

The results of the mean error distance (in pixel
units) for the complete set of images where:

n= 32 n= 64 n=128

Fourier 4.0 1.8 0.8

B-Splines 3.9 2.1 0.9

Haar 6.1 3.3 1.7

D4 2.8 1.2 0.6

La8 2.4 1.0 0.4

GMH 2.5 1.1 0.5

CL 2.7 1.1 0.5

SA(4) 2.3 1.0 0.5

Table 1 Mean distance error for test images

Figure 2  Test images



Numerical results show  in general, that best
compresion is achieved with the SA(4) multiwavelet
and the LA8 wavelet. B-spline results where obtained
from subsampling the contour. In Figure 3 it is shown
the mean error distance (n=32) for all test data for
Fourier elliptic descriptors (thick line), LA8 wavelet
(discontinous line) and SA(4) multiwavelet (thin line).
Test contours are numbered left to right and top to
bottom. The worst contour for both SA(4) and LA(8) is
show in Figure 4 where the original contour (thick line),
is shown with the LA8 wavelet approximation
(discontinous line) and SA(4) multiwavelet
approximation (thin line).

In shape processing it is generally desirable not
only a description with a small mean distance. Often it
is useful to obtain a small maximum distance between
the original contour and its approximation. To test the
capacity of this description to obtain a low maximum
error, the 95% percentile of the maximum distance was
computed for the LA8 and SA(4) multiwavelet for all
images in the database obtaining the results in Table 2.
Therefore resultss show that we have obtained a
compact contour representation that is also invariant.
This propery will be used in the next sections.

n= 32 n= 64 n=128

La8 wavelet 4.14 1.72 0.76

SA(4)
multiwavelet

4.09 1.80 0.79

Table 2. The 95% percentile of the distance error

4. Wavelet based Contour fitting.

The contour fitting problem can be stated as [5]:

rrrrr f
sr

   where
22

)(
����min  is a reference shape

and r f is the detected shape on image. The first term is a
regularization expresion that biases the fitted curve
toward a mean shape to a degree determined by a
regularization constant �. The second term biases the
solution to the contour detected in image. Using the
orthogonality of the wavelet coefficients the problem
can be stated as:

22

f
C

CCCC ����min    where C is a vector

with the wavelet coeficients ci,j,x and ci,j,y.

In practice it is desirable that the regularizing term
is invariant against rotations and translations so that it
only influences the shape of the fitted curve and not its
position or orientation. This can be obtained by
projecting the shape on the subspace of deformations by
a suitable  projection matrix S. The problem can then be
reformulated as:

� � � � � � � �ff
C

CCCCCCSCC �����
TT

min �

this formulation and the wavelet description allows a

fast, inversion-free evaluation of the optimal solutionĈ
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Figure 3 Error comparison

Figure 4 Maximum test image error



Note how the preceeding expresion allows an easy
interpretation: In the deformation subspace a weighted
mean between the mean shape and the image shape is
carried out. In the translation and rotation subspace
(corresponding to the I-S matrix) all information is
taken from the contour in the image.

An experiment showing the fitting algorithm is shown
below, in Figure 5 we can see the initial position of the
contour (mean shape) , then in Figure 6 we can see the
fitted contour.

                              Figure 5 Mean Shape

Figure 6 Fitted Contour

5.- Wavelet based contour tracking

In order to use the previous contour fitting
algorithm to more complex applications such as
tracking an important limitation appears: it is necesary
to know the entire shape of the curve in the image. This
makes that the algorithm has a limited application to
noise free and non cluttered images. If this is not the
case, it is necesary to infer the wavelet coefficients from
the partial shape in image. This makes the fitting

minimization expression more complex so that matrix
inversion can not be avoided. The main benefit in this
case comes from the compact representation of the
contour which reduces significatively the
dimensionality of the problem  using the thresholding
rule in section 3.

The benefits from this compact representation can
also be used where a parametric contour formulation is
needed. We now show a tracking application where the
active contour[5] parametric formulation has been used.

Figure 7 Kalman filter

In this formulation the wavelet coeficients
evolution is modeled as an second order AR process:

kkkk ttt wBCCACCACC 02 ������
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 where wk is independent gaussian noise with zero mean

and  C  is the mean shape defined in the previous
section. Contour tracking is then carried out with a
Kalman filter using a propagation loop (Figure 7). In
Figures 8-10 we show an implementation of the tracker.
Wavelet coefficient dynamics are descomposed in three
subspaces: translation, rotation and deformation, and
different parametrizations are defined n them reflecting
the different evolution on these subspaces. The wavelet
decomposition used has been Daubechies LA(8).

Predict C(tk) from the dynamic model.

Combine C(tk) with contour from the

image.

Assimilate combination with

predicted C(tk).



Figures 8,9,10 Shape tracking.  Contour is overimposed on
image with color black

Results show how the mouse is correctly tracked
even in the presence of severe deformations of the shape
using only 8 wavelet coefficients.

6. Conclusions

In this paper we have presented an invariant
compact representation of the contour. Its ability to
simplify contour representation has been show by
several examples from a contour database. Moreover
this representation has been used to solve fitting and
tracking problems where complexity  has been reduced

by means of the wavelet representation of the contour.
This provides an efficient representation capable to
provide a set of so-called content-based functionalities
such as tracking required by the recent MPEG-4 and
MPEG-7 multimedia standards.
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